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Abstract: We demonstrate a tabletop holographic display system for simultaneously serving 
continuous parallax 3.2-inch 360-degree three-dimensional holographic image content to 
multiple observers at 45-degree oblique viewing circumference. To achieve this, localized 
viewing windows are to be seamlessly generated on the 360-degree viewing circumference. 
In the proposed system, synchronized four high-speed digital micro-mirror displays are 
optically configured to comprise a single 2 by 2 multi-vision panel that enables size 
enlargement and time-division-multiplexing of holographic image content. Also, a specially 
designed optical image delivery sub-system that is composed of confocal parabolic mirrors 
and an aspheric lens is designed as an essential part for achieving enlarged 3.2-inch 
holographic image and large 45-degree oblique viewing angle without visual distortion. 
© 2016 Optical Society of America 

OCIS Codes: (090.0090) Holography; (090.1995) Digital holography; (090.2870) Holographic display. 
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1. Introduction 

Tabletop 360-degree three-dimensional (3D) display system is one of the most interesting and 
simultaneously challenging 3D display system configurations [1-3]. Its full 360-degree 
viewing zone range, consequential novel visual 3D experience, and necessary huge content 
data amount contrast it against conventional flat-panel based 3D displays with narrow 
viewing zone [4,5]. Because of its uniqueness and ultimacy, many researchers have actively 
investigated the possibility of the systematic realization of tabletop 360-degree 3D display. 

In the research of tabletop 3D display, the use of electronic holographic display 
technology is encouraging [6-8] since, in principle, the holographic image synthesis provides 
continuous parallax, deep depth perception cue, and resolves the fundamental problems of 
non-holographic 3D display techniques such as accommodation-vergence conflict [9]. A 
previous multiview-based tabletop displays have discretized views even with a support of 
hundreds of projectors [1], but the holographic display creates continuous parallax view 
within the viewing window. Hence, holographic tabletop display is a promising candidate for 
the tabletop 3D display. 

In order to construct practical tabletop holographic 3D display, countermeasures for 
several technological issues should be devised. First, a large view volume is a requisite for 
commercial success. For this issue, ultrahigh resolution and high speed display panel 
accommodating full color R/G/B is an essential theme [10-16]. A previous tabletop system 
that used a digital micromirror device (DMD) showed a very limited small active display area 
[6], though it exploited high speed operation capability. The simple scaling of this 
configuration by the form of multiple array, i.e. multi-vision, can be a candidate for extending 
the active display area, but it makes the optical system highly complicated. Regarding this, 
we should additionally consider the management of large aperture optical aberration inducing 
distortion of large size holographic image. The design of aberration-compensated optical 
system is issued. Second, highly off-axis viewing circumference should be created for 
practicality of tabletop vision system. The previous holographic tabletop display system has a 
technological limitation in this point since the decentered Fresnel lens cannot cover 45-degree 
off-axis viewing zone due to noisy stray light generation and light field distortion by 
aberration, thus the viewing angle of the previous system is restricted within maximum 15 
degrees [2,6]. In practice, the system configuration of refractive optical elements gets bulky 
and multi-elemental for achieving such highly off-axis oblique imaging condition, which is 
difficult in alignment and weak in chromatic dispersion, while the system based on smooth 
reflective optical elements such as parabolic mirror is more suitable for the same objective 
and has advantage of free chromatic dispersion. Third, considering the first and second points, 
we encounter special design and high degree of engineering of aspheric element to manage 
rotational symmetric large-aperture 45-degree off-axis imaging system.  

In this paper, based on the above considerations, we design and demonstrate a tabletop 
holographic 3D display system that can serve 3.2-inch continuous parallax 360-degree 
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magnification. The aspheric lens in the confocal parabolic mirrors is designed to make the 
collimated incident light converge onto the viewing window after sequentially passing 
through the aspheric lens and the confocal parabolic mirrors. Their prescriptions are listed in 
Table 1. 

Table 1 Lens prescriptions 

Achromatic lens with 180 mm EFL Aspheric lens 

D(mm) 

CT1(mm) 

CT2(mm) 

R1(mm) 

R2(mm) 

R3(mm) 

Substrate 

50.80 

3.60 

13.00 

81.594 CX 

45.587 

612.142 CX 

E-F3/H-QK3L 

D (mm) 

CT(mm) 

R1(mm) 

K1 

A1 

B1 

C1 

R2(mm) 

Substrate 

 

66.00 

22.00 

34.9062 CX 

-0.562455 

0.1243957e-07 

0.4122396e-10 

0.14952993-13 

174.6608 CC 

PMMA 

Achromatic lens with 300 mm EFL 

D (mm) 

CT1(mm) 

CT2(mm) 

R1(mm) 

R2(mm) 

R3(mm) 

Substrate 

76.20 

6.00 

21.60 

135.987 CX 

75.978 

1020.237 CX 

E-F3/H-QK3L 

D: diameter; CT: center thickness; R: radius; K: conic constant; A, B, C: coefficients of 4th, 6th, and 8th order terms in 
even aspheric surface. System demonstration for 360-degree electronic holographic display system 

3. System implementation 

As is described in Fig. 2, the proposed system can be functionally divided into two parts, (i) 2 
by 2 DMD combining and filtering part and (ii) magnifying and scanning part. The system 
prototype is presented in Fig. 4(a) with design drawings of the two parts. The design drawing 
and practical implementation of the magnification and scanning part are shown in Figs. 4(a) 
and 4(b), respectively. Figs. 4(c) and 4(d) show the design drawing and practical 
implementation of the DMD combining and filtering part. Much effort was devoted to align 
the two optical parts to match the center of the rotating tilted image of virtual hologram to the 
cross point of the rotation axis and the top surface of the confocal parabolic mirrors. The 
combining and filtering stage presents the feasibility of the scalable system, and the 
magnifying and scanning part renders the tabletop display comfortable for use by getting rid 
of any obstacles above it.  

In the system layout, the lens L7, and mirrors M3 and M4, are grouped and this group is 
mechanically rotated under the confocal parabolic mirror as indicated in Fig. 4(a). Therefore, 
the 3.2-inch holographic plane rotates as the viewing window revolves along the viewing 
circumference band. Here, the VW is set to 14 mm × 7 mm for the operating wavelength of 
532 nm and the perimeter of the circumference band is 4.4 m. 

With a single revolution, the VW rotates a complete 360-degree as clarified in Ref. 6. 
Taking account of this periodic rotation of the rectangular VW, we count the necessary 
number of VWs, at least 628 to compactly distribute the VW on the viewing circumstance 
band. Fortunately, each DMD (ViALUX GmbH, VIS-7000) has the operating speed of 
22,727 Hz for binary images, so it is enough to broadcast more than 1,136 shots of 1,024 × 
768 resolution images per one revolution at real time speed of 20 frame/sec. In the 
implemented system, 628 viewing windows are densely planted along a 700 mm radius 
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5. Conclusion 

In conclusion, we have investigated technological innovation in the development of 360-
degree holographic tabletop 3D display with highly oblique observation viewing 
circumference. As indicated in the introductory part, the issues of the enlargement of virtual 
hologram and the seamless continuous parallax holographic 3D image generation at the 45-
degree off axis viewing circumference were addressed. This study has remained many 
research issues and one of them is the scale reduction or minimization of the system. The 
integration of red, green, and blue color components for full-color holographic display in the 
scale-downed tabletop system will be a very challenging topic. In addition, the active area of 
the confocal parabolic mirror system is only less than 10% of the parabolic mirror area. The 
waste of the space is a serious problem. Introduction of advanced freeform optic technology 
is considered as a prospected solution. Besides the system design issues, the CGH for DMD is 
binary CGH and it results in the degradation of the image quality severely. The binary CGH 
optimization problem is still an open problem in the CGH research field [19, 20]. Basically, 
the tabletop display generates 360-degree continuous horizontal parallax. However, the small 
vertical length of VW restricts the vertical viewing angle tightly. The enhancement of vertical 
viewing angle is also a pending issue in the development of holographic tabletop display. 
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