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Human gait reflects biomedical conditions and thus can potentially be used for identification. With the increasing utility of CCTVs

for surveillance, there have been various attempts to recognize persons using gait image sequences from a single camera. We

investigated the accuracy of estimating body segment lengths and joint angles during gait calculated from a video sequence using

a gait database. We recruited 30 subjects and collected motion capture data during walking and extracted the trajectories of 17 body

points. Principal component analysis (PCA) was applied to the collected gait. We implemented full gait cycle-based (FGC) PCA and

gait-phase-specific (GPS) PCA. Three-dimensional poses were estimated from gait event frames using FGC-PCA and GPS-PCA. The

estimated poses in discrete gait event frames were interpolated to estimate motion during a full gait cycle. The body pose from GPS-

PCA was less sensitive to camera angles and smaller errors compared to FGC-PCA. The segment lengths of the upper arm (r=0.79),

lower arm (r=0.63), upper leg (r=0.86), and lower leg (r=0.81) were highly correlated with the lengths obtained from the motion

capture data. Three-dimensionally reconstructed human motion can reveal personal biometric information and has the potential to

be used for human identification.
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1. Introduction

Human gait contains biometric features influenced by individual

biomedical conditions and history such as weight as well as serious

injuries associated with the joints or brain.1-5 Gait features have long

been studied for identification using video surveillance applications such

as smart closed-circuit television (CCTV).6-16

Recently, criminals were identified based on gait analysis using

CCTV evidence. It was confirmed that gait analysis can be useful in

forensic investigations.17 A bank robber was identified by comparing

surveillance footage of a crime scene with the image of the suspect.

They contended that, according to gait analysis and anthropometric

methods, the suspect and perpetrator could have been the same person.

In the U.K., a podiatrist analyzed a burglar’s peculiar gait obtained from

a CCTV and confirmed that there were considerable similarities between

the suspect and perpetrator.18

Technically, methods to identify a person using gait can be divided

into two main groups. The first group involves motion-based methods.6-13

This method is based on simple features extracted from video spatial-

temporal silhouettes of gait motion without considering a basic geometric

model. This method is simple, but the results are sensitive to video view

angle.

The second group uses geometric human models and predicts joint

angles in two-dimensional (2D) space from video data.14-16 The results

of this method also depend on video view angle. Recently, three-

dimensional (3D) structure reconstruction from 2D video sequences has

been conducted.9-26 We reconstructed 3D gait using a 3D pose

reconstruction algorithm and then extracted gait parameters. This study

explicates a method to extract 3D geometric gait features from a video

for individual identification.

1) Body segment length prediction: The length of body segments

provides important personal biometric information. Body segment

lengths were predicted from a video sequence through 3D human pose

reconstruction.

2) Gait interpolation: A three-dimensional interpolation method for

joint kinematics was developed to reduce the necessity for manual

labeling of joint positions in gait event frames and to reconstruct the

kinematics for a full gait cycle.

3) Temporal joint angles: In addition to the body segments, joint

movement patterns and their ranges during a gait cycle were extracted
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as features for identification.

4) Effect of camera angle: Camera angle relative to gait progression

line affects the accuracy of 3D human pose predictions. This study

proposes a method to improve accuracy even when the camera is at the

front or back of a person by using gait phase information.

2. Related Work and Our Approach

It has been proposed to calculate the 2D joint angles of people from

a video sequence using stick figure models.14-16 Joint center points were

marked from video frames, and then 2D models and their joint angles

were calculated. However, the 2D models presented motion from a

specific camera angle. Recently, studies have been conducted to

reconstruct a 3D structure from a 2D image. Tomasi and Kanade27

proposed that 3D scene geometry and camera motion could be inferred

from a stream of images.

Using this concept, Ramakrishna et al.21 decomposed a 3D human

pose into three sets: camera parameters, base poses, and coefficients.

They used a 3D gait database to determine base poses constrained by

the sum of squared segment lengths. However, the constraint was weak

and could not fully represent human poses. Wang et al.20 advanced this

method and constrained the ratios of eight body segments. However,

their method ignored the variations in body segment ratios between

individuals.

Wandt et al.23 also used a gait database and used principal component

analysis (PCA) of the 3D gait data to extract eigenvectors. They

represented a 3D pose as a linear combination of a set of eigenvectors.

Using eigenvectors from PCA as base poses, segment lengths could be

estimated. They simultaneously optimized camera position continuity

and the sum of variances of segment lengths for the entire video frame.

These pose estimation algorithms require joint points in all frames

of a video sequence. Practically, it is time consuming to manually mark

the joint centers in every frame. In this study, we reconstructed the 3D

human pose only for selected gait event frames using frame specific

principal components. The gait events were selected to represent specific

gait phases such as heel-strike and toe-off. The human poses between

the gait events were estimated by interpolating the discrete poses at gait

event frames.

In this study, we decomposed camera parameters into a camera

projection matrix and a transformation matrix for the model, which was

calculated as a combined matrix in previous studies.20,23 Previously, the

absolute positions of a human model could not be calculated because

the human model was fixed at the origin, and the camera position was

moved.20,23 However, the camera position is fixed in most video

surveillance applications, and the pedestrian moves. As a result, it is

important to calculate pedestrian absolute position in order to calculate

gait parameters such as step length. We assumed that the camera

parameters are known from calibration images and fixed camera intrinsic

and extrinsic parameters to increase accuracy in estimating a human

pose. Previous studies could not calculate limb length scale because of

the lack of camera calibration information. We could calculate absolute

limb lengths and tested the validity of limb length estimation.

The effect of camera view angle was evaluated due to reports that

the accuracy of recognition is lower in the frontal view compared to the

lateral view.18,28 In this study, pose reconstruction accuracy was analyzed

for camera elevation and azimuth angles, and accuracy was improved

by using a gait phase-specific PCA method.

3. Method

3.1 Data Acquisition

Thirty male subjects (height 171.8±4.7 cm, weight 66.7±6.0 kg)

volunteered for this study. We obtained gait data from the subjects at

their self-selected walking speed using a motion capture system with

nine cameras (MX-T10, Vicon Motion Systems, Oxford, UK). Forty-

one reflective markers were attached to subjects according to the plug-

in-gait marker set typically used in the Vicon motion capture system,

as shown in Fig. 1. We attached three additional markers on the top of

the head and one at each toe. Participants were asked to practice walking

on the walkway for five minutes. One gait trial was collected from each

subject.

Three-dimensional marker trajectories were recorded at 100 Hz.

Anatomical joint center 3D trajectories were calculated from the

trajectories of the reflective skin markers and subject segment lengths

using Vicon Nexus software (ver. 2.5, Vicon Motion Systems, Oxford,

UK). We created a stick figure model from 17 points (12 anatomical

joint centers, head top, heels, and toes), as shown in Fig. 2. The joints

included the left and right shoulders, elbows, wrists, hips, knees, and

ankles.

We obtained video sequences of walking from three different views

simultaneously using a motion capture system with CMOS cameras (one

Canon 60D and two Canon 7D cameras) at a shutter speed of 25 frames

per second. Cameras were calibrated using images of a checkerboard to

calculate their intrinsic and extrinsic parameters.

We created a virtual camera with elevation and azimuth angles set

around the volume of the motion trajectory. The virtual camera projected

Fig. 1 Motion capture data were obtained during walking (left). Three-

dimensional anatomical joint positions were calculated and re-

projected onto video frames (right)
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the joint centers into a two-dimensional plane similar to CMOS cameras.

The video sequences obtained with real CMOS cameras were used to

validate the virtual camera. The joint centers were projected to the plane

of a virtual camera and were used to draw a two-dimensional stick figure.

3.2 Motion normalization and principal components analysis

The walking progression line was aligned to the y-axis. The mid-

point between the two hip centers was translated and fixed at the origin.

One gait cycle from heel-strike to heel-strike was identified and cropped

from the motion capture data for all walking trials. Eight different gait

events in the gait cycle (heel-strike, toe-off, early-mid-stance, and late

mid-stance of the left and right legs) were manually identified for all

gait trials to resample the gait data matching the number of frames

between gait events, resulting in 127 frames per gait cycle.

A pose vector (51x1) was composed of the 3D positions of 17 points

for each frame. One gait trial had 127 pose vectors. All pose vectors

from the gait trials of 30 subjects created a 51 × 3,810 matrix. The PCA

was applied to calculate the mean pose and principal components from

the pose for the full gait cycle (FGC) data, as performed in previous

studies.23 This approach is referred to as FGC-PCA in the text below.

The pose vectors from 30 percent of the frames of a gait cycle around

a gait event (51 × 38 matrix) were extracted and concatenated with

those from all gait trials, resulting in a 51 × 1,140 matrix. The PCA was

applied to calculate the gait-phase-specific (GPS) mean pose and

principal components. There were eight sets of GPS-PCA-based mean

pose and principal components for the gait events: heel-strike, toe-off,

early-mid-stance, and late mid-stance for the left and right legs.

3.3 Three-dimensional pose reconstruction algorithm

A human pose in a frame is represented as a vector, P3D∈R
51×1, by

three-dimensional coordinates of 17 points. The pose vector at the origin

is expressed as a linear combination of the mean pose (Q0) and principal

components (Q(i)’s) from PCA. We used 25 principal components, as

shown below,

(1)

where θ (i) is the weight for the i-th principal component, Q(i).

The pose matrix is reshaped to represent homogeneous coordinates

of the 17 points, P'3D∈R
4×17. The reshaped pose matrix is transformed

by T∈R
4×4 and projected to the image plane of a camera by M∈R

3×4

as follows,

(2)

where (P2D)'prj represents the homogeneous coordinate of (P2D)prj.

The transformation matrix, T, has six variables to be determined,

and the camera projection matrix, M, is pre-determined assuming that

the camera is calibrated and its pose is known relative to the ground.

During walking, at least one foot is on the ground.29 If a heel or toe

point touches the ground, we can calculate its absolute position in 3D

space by calculating the intersection between the line from the camera

to the image point and the ground, as illustrated in Fig. 2. The absolute

position of the heel and/or toe can be used to estimate the absolute

position of the human model.

There are two steps to estimate the transformation matrix, T, and the

weight vector, Θ = [1, θ (1), …, θ (25)]. First, we estimated the initial

transformation matrix of the human model using the absolute position

of the heel and/or toe by minimizing the following object function. Θ

is set to [1, 0, …, 0] to use only the mean pose in the beginning as

follows,

(3)

where  is the i-th joint center projected to the camera image

plane,  is the j-th joint center marked in the video frame,

 is the absolute position of the heel and/or toe point, and

 is the 3D position of the matching heel and/or toe point.

Here, n represents the number of heel and toe points, and γ is set to 0.2/

n, representing the weight to balance the pixel and 3D distance (mm)

metrics.

Thereafter, the following optimization routine and the previous

optimization routine are executed alternately.

(4)

These two steps are iterated until the two object functions converge

at a stopping condition. Fig. 3 shows the schematic diagram of

reconstructing 3D poses for a full gait cycle.

3.4 Joint kinematics interpolation

The length of each segment was calculated as the average of values

in the reconstructed poses in the gait event frames. Among the 17 points

representing the 3D pose of a human stick figure model, the center of

the two hip joints was used as the root in our model hierarchy. The

positions of the root in the gait event frames were interpolated to estimate

the root positions in the intermediate frames using the 3D Bezier

interpolation method.30

Then, the coordinate systems of all segments were determined at the
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Fig. 2 The three-dimensional stick figure model was made using 17

points (12 joint centers, top of the head, heels, and toes)

utilizing subject motion capture data



756 / MAY 2018 INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING  Vol. 19, No. 5

joint points from the positions of the 17 points in each event frame of the

gait according to a previous study.31 We used quaternion representation

for interpolating the human motion.32 Quaternion representations of the

3D rotation of distal segments with respect to proximal segments were

calculated between two adjacent segments. The quaternions between

gait event frames were interpolated using the Slerp spherical linear

interpolation method.32 The angular displacement in each joint was

calculated for the full gait cycle using the interpolated poses.

3.5 Accuracy of pose estimation during a gait cycle

The accuracy of estimating the 3D locations of the 17 body points

was quantified as the mean 3D Euclidean distance between the

reconstructed points and the measured points from the motion capture

system for the eight gait event frames. This pose reconstruction error

was calculated repeatedly by changing the camera elevation angle from

0 to 60 degrees at intervals of 15 degrees and the azimuth angle from

0 (front) to 180 degrees (back) at intervals of 20 degrees.

The association between the estimated and measured segment

lengths in the eight gait event frames was quantified using a linear

mixed effect model with the subjects as a random effect for each body

segment including the upper and lower arms and upper and lower legs.

The accuracy of estimating joint angles was quantified as the root

mean square (RMS) error over a gait cycle between the interpolated

pose and the measured pose from the motion capture system along the

three rotational directions for the shoulder, elbow, hip, and knee joints.

The effect of using the locations of the calculated 3D heel and toe

points compared to using their true locations on pose estimation and

interpolation was determined as the mean 3D Euclidean distance error

in each frame of the gait cycle.

4. Experimental Results

4.1 The influence of camera angle on 3D error

Fig. 4 shows the mean position errors of the 17 body points of the

reconstructed model in gait event frames with respect to the positions

calculated from the motion capture data. The mean position errors were

as low as 26 mm at an azimuth angle of 80 degrees in the GPS-PCA

method. The mean marker position errors obtained from the GPS-PCA

method were lower than those from the FGC-PCA technique at all

Fig. 3 Schematic diagram. (1) PCA using gait data to generate the

mean pose and principal components. (2) Input of a video

sequence. (3) Estimation of a transformation matrix of the

model to determine the absolute position relative to the camera

position. (4) Calculation of weights for principal components

to determine the pose. Steps (3) and (4) are repeated alternately

to minimize the reprojection error of joint centers. (5)

Interpolation of the poses at gait events to reconstruct poses for

the full gait cycle

Fig. 4 Influence of camera azimuth angle and elevation angle on the

mean 3D position error of the 17 body points for the full gait

cycle-based PCA method and gait phase-specific PCA method
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azimuth angles.

The mean position error was higher in the low elevation angles and

as low as 28 mm when the elevation angle was 30 degrees in the GPS-

PCA method. The error was lower using the GPS-PCA technique

compared to FGC-PCA for all elevation angles.

The error of reconstructed 3D poses was highest when the camera

was located in the front or back of a person in both the GPS-PCA and

FGC-PCA methods. This could be caused by the larger number of

candidate poses for each specific gait pose in the front and back views

compared to the lateral view. However, it should be noted that the

accuracy of the pose reconstructed with the GPS-PCA technique was

less affected by azimuth angle except at 180 degrees. The GPS-PCA

approach uses the information of the gait phase for the target frame and

estimates the weight of principal components calculated from the poses

near that gait phase in the database, which would increase the pose

estimation accuracy.

4.2 Estimation of segment length

The associations between the estimated segment length in the eight

gait event frames and the measured segment length were calculated for

the upper arm, lower arm, upper leg, and lower leg, as shown in Fig. 5.

The slopes of the regression lines were between 0.991 and 1.001 for the

four segments. The correlation coefficients of the upper arm, lower arm,

upper leg, and lower leg were 0.79, 0.63, 0.86, and 0.81, respectively.

The coefficients of the lower limbs were higher than those of the upper

limbs, which should be affected by our objective function, which uses

the absolute foot position in estimating the pose.

4.3 Gait interpolation

A full gait cycle was interpolated using nine gait event frames from

the left heel strike to the next left heel strike for 30 subjects. Nine gait

event frames were calculated using the GPS-PCA method. The results

for each subject were calculated at an elevation angle of 45 degrees and

an azimuth angle of 90 degrees (lateral view). The mean position error

of the 17 body points varied during the gait cycle, as shown in Fig. 6.

4.4 Root mean square error of the joint angles

The joint angles were quantified along the flexion-extension (FE),

abduction-adduction (AA), and internal-external (IE) rotational

directions in each joint. The root mean square (RMS) errors of the joint

angles were calculated in the shoulder, elbow, hip, and knee.

The mean (SD) values of the RMS error for shoulder joint angle

were 1.45 (0.60), 2.49 (0.81), and 0.80 (0.39) degrees for the FE, AA,

and IE rotation angles, respectively (Fig. 7). The mean (SD) values of

RMS errors for the elbow joint angle were 3.22 (1.21), 5.90 (1.96), and

3.31 (1.35), respectively. The accuracy of the elbow joint angle was

lower than that of the other joints because the accuracy of wrist point

estimation was lower than that of the lower body points. Overall, the

AA rotational angle was less accurate than the FE and IE angles.

Fig. 5 Segment lengths estimated from the reconstructed pose in the

gait event frames

Fig. 6 Mean position error of the 17 body points when the motion

was interpolated from the poses in the gait event frames

Fig. 7 RMS errors of the estimated joint angles in the shoulder,

elbow, hip, and knee joints during a gait cycle
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5. Conclusions

This paper proposed a method for 3D pose estimation during gait

from a single camera video sequence. The PCA was applied to the gait

data from 30 subjects to calculate mean pose and principal components.

Three-dimensional poses were estimated for the gait event frames in

simulated video sequences using FGC-PCA and GPS-PCA. Unlike the

FGC-PCA method, the GPS-PCA method uses the gait phase

information of the pedestrian in the target image frame. The principal

components obtained from the poses in the database around the phase

of the target frame could predict the target pose more accurately.

We analyzed the effect of camera view angle on pose reconstruction

accuracy. The 3D pose reconstruction from the front and back views

was less accurate than that from the lateral camera view. Using a

specific gait phase, the accuracy of pose reconstruction increased

overall and became less sensitive to camera angle. The correlation

coefficients of the segment lengths of the lower limbs were higher than

those of the upper limbs, as the objective function had a term determine

the absolute position of the foot in estimating the 3D pose.

In addition, a full gait cycle was reconstructed by interpolating

estimated poses from gait event frames. The extracted joint angles of

the reconstructed 3D gait were highly correlated with measured values

in the motion capture data. The accuracy of the elbow joint angle was

lower than that of the other joints because the accuracy of wrist

position estimation was lower than that of the lower body points.

Overall, the AA rotational angle was less accurate than the FE and IE

angles. Because the results of gait interpolation were calculated at an

azimuth angle of 90 degrees (lateral view), the accuracy of the AA

rotational angle was relatively low.

The limitation of the study is that, unlike most real situations, there

was only one person in the field of view for gait parameter analysis. In

a real situation, the person we want to analyze could be obscured by

others. Therefore, research on reconstructing a 3D pose when a part of

the body is occluded in CCTV is needed. The 3D reconstructed human

motion can reveal the biometric information of a person and has the

potential to be used for identification.
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