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A B S T R A C T

Human motion during walking provides biometric information which can be utilized to quantify the
similarity between two persons or identify a person. The purpose of this study was to develop a method
for identifying a person using their walking motion when another walking motion under different
conditions is given. This type of situation occurs frequently in forensic gait science. Twenty-eight subjects
were asked to walk in a gait laboratory, and the positions of their joints were tracked using a three-
dimensional motion capture system. The subjects repeated their walking motion both without a weight
and with a tote bag weighing a total of 5% of their body weight in their right hand. The positions of 17
anatomical landmarks during two cycles of a gait trial were generated to form a gait vector. We developed
two different linear transformation methods to determine the functional relationship between the
normal gait vectors and the tote-bag gait vectors from the collected gait data, one using linear
transformations and the other using partial least squares regression. These methods were validated by
predicting the tote-bag gait vector given a normal gait vector of a person, accomplished by calculating the
Euclidean distance between the predicted vector to the measured tote-bag gait vector of the same person.
The mean values of the prediction scores for the two methods were 96.4 and 95.0, respectively. This study
demonstrated the potential for identifying a person based on their walking motion, even under different
walking conditions.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Human motion plays an important role in understanding
personal motion characteristics [1]. Human motions are a
repetitious sequence of smaller motions with a cycle-to-cycle
variation, which are complex activities comprising numerous
interactions between multi-segments of the body [2]. Human
motion provides important biometric information [3], thus it has
been widely investigated in laboratories for applications in human
identification [4,5], human activity classification [6], emotion
detection [7], and gender classification [8]. Human walking motion
or gait analyses have long been investigated and have produced
various promising applications such as human identification,
human recognition, and human motion synthesis. Specifically,
walking motions can be analyzed for forensics purposes to provide
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similarity measurements [9], similar to finger prints, in order to
complement other identifying information.

Identifying a person based on gait for use in surveillance
applications was inspired from the fact that motions can be
collected without contacting the subjects via non-invasive
characteristics [4]. Moreover, human motion has been utilized
as evidence to identify criminals in forensics in Denmark and the
UK [10]. Two bank robbers were identified by Lynnerup et al.
through a similarity index by matching their motions with the
motions from collected surveillance systems [11]. To identify a
person, inter and intra similarity scores were estimated by Nixon
et al. for different subjects and the same subject, respectively [12].
Josi�nski et al. [13] applied multiple classifiers to identify a person,
including naive Bayes, k-nearest neighbors, a radial basis function
network, and multilayer perceptron, by processing gait motion
capture data. Lugwig et al. [14] quantified the gait pattern in
various situations based on joint angle measurements via two-
dimensional sagittal-view images. Recent advances in deep neural
networks and computer vision techniques have allowed estima-
tion of human joints in images and two-dimensional poses without
human intervention [15] and estimation of three-dimensional
human poses from single camera videos such as CCTV [16,17]. As
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these techniques mature, a method of comparing three-dimen-
sional walking poses that allows for calculating the similarity
between known and unknown persons in CCTV videos for forensic
gait analysis is needed. However, there is still only a paucity of
information regarding the changes in three-dimensional (3D)
walking motion of a subject under different walking conditions,
which is important for human identification and quantifying the
similarity between two walking motions.

Previous studies have presented walking motions as coordi-
nates of joint positions or joint angles, while some of the studies
applied frequency analyses to the motions to transform the human
motion between different styles. Unuma et al. [18] transformed the
time series of joint angles into the frequency domain and
presented human motions using Fourier coefficients. A linear
coefficient was utilized to interpolate and extrapolate between
two styles for the same subject. Meanwhile, Pullen and Bregler [19]
applied Laplacian Pyramid decomposition using middle to high
frequencies, and subsequently transferred the motion. In other
studies, Yumer and Mitra [20] applied a discrete Fourier transform
to decompose the joint position in the time domain signals into the
spectral domain and transfer the motion into the spectral domain.
In addition, Troje et al. [21] synthesized the motions of males and
females as a combination of sinusoidal functions and presented a
linear transformation method to transfer the motions of a
generalized model.

Various other approaches have investigated dynamic models.
For example, a linear time-invariant algorithm was introduced
by Hsu et al. [22] to transform one motion into a motion of
another style, specifically they transformed normal walking into
a sneaky crouch-style walking. Multi-linear analysis techniques
were utilized by Min et al. [23] to synthesize the personalized
stylistic motions of a person and transfer such motions of one
subject to another with a large dataset using an angle
coordinate system.

Recently, state-of-the-art deep learning techniques have be
applied for motion synthesis. Taylor and Hinton [24] and Nair and
Hinton [25] utilized restricted Boltzmann machines to produce
human motion synthesis and prediction. Furthermore, Fragkiadaki
et al. [26] utilized deep learning with a feedforward neural
network model using a loss network with a convolutional auto-
encoder to transform the locomotion. In general, deep learning
requires a voluminous motion dataset for training.
Fig. 1. Forty-three retroreflective markers were attached to the anatomical landmarks 
The objectives of this study were to develop a method for
identifying a person using their walking motion when given a
different walking motion under different walking conditions and
to test its performance. We used a biomechanical approach by
calculating the 3D joint kinematics and finding their linear
transformation for different environmental conditions. The study
contributes to understanding the potential application of human
motion-based identification as admissible evidence, especially
when other strong traditional features such as DNA, face data, and
fingerprints are not available [27].

2. Method

2.1. Data acquisition

Three-dimensional coordinates of the joint positions were
recorded using an optical motion capture system (MX T-10, Vicon
Motion Systems, Oxford, UK) with eight cameras. The study was
approved by the Institutional Review Board at ** Blinded for review
**. Informed consent was obtained from each subject prior to testing.
Twenty-eight male subjects (23.9 � 1.8 years old, 172.2 � 4.6 cm in
height, and 66.9 � 5.9 kg in weight) volunteered for the study. Forty-
three retroreflective markers were attached to the anatomical
landmarks of the body according to the Vicon plug-in-gait marker-
set protocol (Vicon, Oxford, UK) [28], as shown in Fig. 1. All motion
data were obtained on the same day and marker placements
remained at the same positions throughout all gait trials. Each
subject practiced walking on a 6.4-m-long walkway with his sport
shoes and performed a walking trial at their self-selected walking
speed. A tote-bag with size 30 cm by 28 cm was prepared, which
contained weights totaling 5% of the subject’s body weight. The
subject performed normal walking again but instead while carrying
the tote-bag in his right hand. The subject repeated both normal and
tote-bag walking trials twice. Three-dimensional trajectories of the
43 body markers were recorded at 100 Hz.

2.2. Data processing

Trajectories of the 43 retroreflective markers were processed
using the Vicon Nexus software (Vicon Motion Systems, Oxford, UK)
to extract the temporal positions of 17 anatomical landmarks in the
body, including the head, heels, toes and joints such as shoulders,
of each subject and their positions were recorded using a motion capture system.



D.-P. Nguyen et al. / Forensic Science International 290 (2018) 303–309 305
elbows, wrists, hips, knees and ankles joints. The positions of the
right heel marker with respect to the ground were used to identify
two gait cycles in each walking trial. A walking motion was
represented as time-series pose data, which were the trajectories
of the 17 anatomical landmarks for the frames during two gait cycles.
The number of frames for the two gait cycles varied among the
subjects and trials. Here, we assumed that the two gait cycles were
representativeof the gaitstyleofaperson; however, notethathuman
gait can be perturbed by various environmental variables.

Inpatternrecognitionandprediction,data normalizationhelps to
remove noise and determine the underlying relationships between
variables [29]. To find the relationship between the two cycles of
normal walking and the two cycles of tote-bag walking, all walking
data were normalized. First, there were variations in walking
locations and directions in the laboratory space between subjects for
the two cycles of walking trials. Second, walking speed and the
number of frames for the two gait cycles varied. The average walking
distance and time for the two cycles of normal walking were
2860 mm and 2.19 s, respectively, and those of tote-bagwalkingwere
2848 mm and 2.18 s, respectively. After aligning the progression line
of all walking trials, all marker positions were subtracted from the
pelvis position, making the motion stationary [21]. The number of
frames from heel-strike to heel-strike were resampled to be 50
frames, thus the total number of frames was 201 frames.

A gait vector with 10251 components was constructed for a gait
trial from the 3D trajectories of the 17 markers for 201 frames. The
gait vectors from 28 subjects with two trials for normal walking
were concatenated to create a normal gait matrix of 10251 �56.
The tote-bag gait matrix was created in the same way.
Subsequently, a principal component analysis (PCA) was applied
to represent each gait vector as n principal components and their
weights maintaining the substantial gait information [30], as
illustrated in Fig. 2.

Method 1—linear transformation between two walking
motions: We assumed that a linear transformation exists that
can map a normal walking motion to a tote-bag walking motion.
Using an average gait vector and n principal components, each of
the normal and tote-bag gait vectors can be represented as a vector
with n components, namely, a reduced gait vector, where n is the
number of the meaningful principal components. Therefore, the
linear transformation between two walking motions can be found
using the reduced gait vectors of both the normal gait vectors
KN x1; x2; . . . ; x56ð Þ and the tote-bag gait vectors KT y1; y2; . . . ; y56ð Þ.
The linear transformation was estimated as:

yi ¼ B þ Axi; i ¼ 1:56:

In matrix form, this is written as:

KT = B + AKN

KT ¼ B A½ � 1
KN

� �
;

Fig. 2. A principal component analysis (PCA) was applied to the normal gait matrix WNð 

average gait matrix (WAN and WAT), the first n meaningful principal components
where B A½ � is the linear transformation, which can be estimated
using a QR decomposition [31].

Method 2—partial least squares regression between two
walking motions: Partial least squares (PLS) regression [32,33]
was used for predicting a tote-bag gait vector from a given normal
gait vector as the second method, which is also called two-block
PLS regression. Each of the 56 normal gait vectors
wN1; wN2; . . . ; wN56ð Þ and 56 tote-bag gait vectors
wT1; wT2; . . . ; wT56ð Þ is a 10251-dimensional column vector made
from three-dimensional trajectories of the 17 anatomical land-
marks for 201 frames. First, we concatenated the normal gait
vectors to their corresponding tote-bag gait vectors of the same
subject to make a column vector wT

Ci ¼ wT
Ni; wT

Ti

� �
of size 20,502 �1,

where the superscript T represents a transpose. Second, a PCA was
applied to decompose the concatenated gait matrix WC ¼
wC1; . . . ; wC56½ � into an average gait matrix WAC ¼ WT

AN; WT
AT

h iT
,

the principal components VC ¼ VT
CN; VT

CT

h iT
, and the weight matrix

K.
The idea of this method is using the same weight vector for both

normal gait vectors and tote-bag gait vectors. In a prediction
process, a new normal gait vector, wNnew, is provided. The weight
vector knew in Fig. 3 can be calculated using the average normal gait
vector, wAN, and the upper part of the principal components, VN, as
shown below.

knew ¼ wNnew � wANð ÞVN

Consequently, a tote-bag gait vector can be estimated from the
weight vector knew, the average gait vector wAT of the tote-bag gait
vector, and the lower part of the principal components, VT.

wTnew ¼ wAT þ knewVT
T

Validation of the two prediction methods: The leave-one-out
algorithm was utilized to validate the two prediction methods.
That is, the normal and tote-bag gait vectors from 27 subjects were
used for training. For the two normal gait vectors of the 28th
subject, their tote-bag gait vectors were predicted. This was
repeated for the remaining 27 subjects. The prediction perfor-
mance was quantified as the Euclidean distance of the 17 landmark
positions between the predicted tote-bag gait vector and the
measured tote-bag gait vector in each frame:

ei ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x mð Þ
i � x pð Þ

i

� �2
þ y mð Þ

i � y pð Þ
i

� �2
þ z mð Þ

i � z pð Þ
i

� �2
r

;

where i = 1, 2, . . . ,17 represents the 17 landmark positions and p
and m represent the predicted and measured tote-bag gaits,
respectively.

The predicted tote-bag gait vector was used to identify a subject
when given the measured tote-bag gait vectors from a population.
The Euclidean distances between the predicted tote-bag gait vector
and the measured tote-bag gait vectors of the 28 subjects, or 56
Þ and tote-bag gait matrix WTð Þ to represent them as a combination of the
 (VN and VT), and the weights (KN and KT).



Fig. 3. The PCA decomposed matrix WC consisting of 56 concatenated gait vectors into an average concatenated gait matrix WAC, a matrix of the principal components VC, and
a matrix of the respective weight vectors K.

Fig. 4. With the training of methods 1 and 2, the normal and tote-bag walking motion data from 27 subjects, i.e., excluding one, were used to calculate the transformation
information between the two motions. To validate the two methods, the Euclidean distances and normalized ranks were calculated for the target subject versus all other subjects.

Fig. 5. The means and standard deviations of the position prediction errors for the
17 anatomical landmarks were calculated for each frame during two gait cycles
using a linear transformation method and partial least squares regression.
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trials, were calculated. The Euclidean distances were sorted in
descending order to calculate the normalized ranks of the two
measured tote-bag gait vectors of the target subject. The average
value of the two normalized ranks were used as the prediction
power of the method. For example, as the best case, the Euclidean
distances of the two measured tote-bag gait vectors of a target
subject were ranked as 55th and 56th. The prediction score was
then calculated as below.

prediction score ¼
55
56 þ 56

56

	 

2

� 100 ¼ 99:1%

The overall process for training the first and second methods
and validating them using the prediction score described in this
study, are summarized in Fig. 4.

3. Results

The mean (one standard deviation) position prediction errors of
the two suggested methods were calculated for the 17 anatomical
landmarks during two gait cycles, as shown in Fig. 5. The linear
transformation method showed a smaller mean error than the PLS
regression method in all frames (mean error of 30.0 � 6.7 mm
versus 34.0 � 8.7 mm) according to a student’s t-test at a
significance level of p < 0.05.



Table 1
The mean and standard deviation of position prediction errors of 17 landmark positions for two gait cycles.

Joint position Linear transformation method (mm) Partial least squares method (mm) p-Value

Top head 28.8 � 9.4 37.9 � 14.7 <0.001
Left shoulder 23.7 � 10.7 31.3 � 14.9 <0.001
Left elbow 32.1 � 9.7 39.3 � 11.7 <0.001
Left wrist 51.2 � 18.7 55.8 � 21.9 0.008
Right shoulder 26.1 � 9.8 31.7 � 14.4 0.003
Right elbow 25.3 � 8.8 29.5 � 10.4 0.001
Right wrist 30.8 � 9.8 34.7 � 10.8 0.003
Left hip 13.9 � 6.2 19.0 � 12.4 0.004
Left knee 26.5 � 7.4 27.7 � 9.4 0.181
Left ankle 32.8 � 8.8 34.1 � 8.6 0.148
Left heel 36.5 � 8.5 37.4 � 8.7 0.341
Left toe 36.5 � 9.5 38.3 � 9.4 0.106
Right hip 14.2 � 5.8 18.7 � 11.8 0.006
Right knee 28.7 � 8.8 29.9 � 9.3 0.149
Right ankle 33.0 � 9.5 34.8 � 11.0 0.029
Right heel 35.2 � 9.1 38.3 � 11.2 0.003
Right toe 35.5 � 11.3 39.0 � 12.8 0.004
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The differences in the mean position prediction were calculated
for every joint using the two methods, as shown in Table 1. The
smallest error was observed at the hips for both methods
(13.9–19.0 mm) and the left wrist, where the joint position has
a large swing during walking, had the largest error of
51.2–55.8 mm. The linear transformation method showed a
generally smaller prediction error than the PLS regression method
in most of the joints, and significant differences were observed in
12 out of the 17 anatomical landmarks, as summarized in Table 1.

The prediction scores of the two methods were calculated for
the 56 trials, and their histograms are shown in Fig. 6. The mean
prediction score of the linear transformation method was higher
than that of the PLS regression method, which was 96.4 (�4.3) and
95.0 (�3.8), respectively. In further analyses, 24 trials (42.9%) and
13 trials (23.2%) scored a 99 for the linear transformation method
and PLS regression methods, respectively. A total of 53 (94.6%) and
47 (89.3%) trials received a score of 92 and above for the two
methods, respectively.

4. Discussion

We developed two gait motion transformation methods to
identify the walking motions from the same person and then
Fig. 6. The prediction score and corresponding frequency of the line
evaluated the performances of the methods, focusing on potential
applications for person identification. Prediction of the joint
trajectories of walking with a tote bag from those of normal
walking for both of our methods showed a superior performance
than in previous studies [20,22,34]. Yumer and Mitra applied a
discrete Fourier transform on the joint positions between two
walking styles. Although the frequency can be used to describe a
human motion, it may distort the representation of the motion
with a significant loss of motion information, resulting in a mean
error of around 50 mm. The methods by Hsu et al. [22] and Xia et al.
[34] resulted in mean errors of around 80 and 50 mm, respectively,
when tested by Yumer and Mitra [20].

The linear transformation method for predicting a tote-bag gait
vector from a given normal gait vector is based on the linear
relationship between the weight vector of the two motions when
applying a PCA. This method is also similar to a PCA regression
method for predicting data from other given data, as stated by
Geladi and Kowalski [32]. However, a PCA was separately applied
for the tote-bag and normal gait vectors, resulting in a weak
relationship between the weight vectors of the tote-bag and
normal walking motions. The weight vectors for the first thirteen
principal components of normal gait vectors were strongly
correlated with those of the tote-bag gait vectors.
ar transformation and partial least squares regression methods.
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With the PLS regression method, an inner relation [32] is found
between two motions by taking the same weight vector for both
motions. However, this makes the principal components from the
PLS regression different from the principal components obtained
separately from the two motions. Thus, the first five principal
components from the PLS regression could explain only 64–67% of
the variance of the individual gait vectors.

In this study, we conducted temporal and spatial normal-
izations. A linear interpolation was utilized for the temporal
normalization, which equalized the number of frames to describe
two gait cycles for every gait. Although this normalization assists in
equalizing the feature vector size or the personalized speed, the
prediction method was unable to predict the absolute temporal
speed. Moreover, spatial normalization was conducted by fixing
the pelvis of a walking individual. Although the suggested spatial
normalization method can produce a more accurate prediction of
human motion, it cannot be applied to a reconstruction of the
absolute spatial position of walking subjects.

The effectiveness of the two motion prediction methods was
tested by re-identifying a person walking under different
conditions, resulting in mean prediction scores of 96.4 and 95.0,
respectively. The normalized rank of 95.0 indicates that the
method can find the appropriate person within the top-five ranked
persons out of 100, which is comparable to previous studies
[35,36]. Xu et al. [35] achieved a 96% recognition accuracy in
finding a correct subject. They used a discriminant analysis with a
tensor representation and a coupled subspaces analysis to extract
the features from the gait data, represented as binary images. The
Mahalanobis distance was then calculated between two motions to
determine the recognition accuracy based on the nearest neighbor
rule. The method by Sarkar et al. [36] resulted in an accuracy of 93%
for finding a correct subject when tested by Xu et al. [35].

Gait is a result of complex neuromusculoskeletal coordination
and interaction with the environment, thus it has inherent step-to-
step and day-to-day variability [14]. However, gait contains a
significant amount of biomedical and biometric information to
evaluate pathologic conditions [37]. We assumed that two cycles of
walking taken in the middle of the walkway are representative of
the walking motion under the weight condition. Interestingly, the
two gait cycles could be used to find the variation at different
weight conditions for the same person with high probability,
suggesting that the gait contains identifiable information. A
limitation of this study is that we performed tests with only
two different walking conditions.

We used 43 body markers and eight high-speed cameras to
extract the spatiotemporal positions of the anatomical landmarks,
which is unrealistic from a forensic perspective. A single, low-
speed (�15 frames per second) camera with a night-time video
sequence would be more realistic. However, recent developments
in computer vision, image processing, and deep neural network
techniques can provide techniques to improve image resolution
[38], automatic identification of human joints in two-dimensional
images [15], and three-dimensional gait pose estimation from a
two-dimensional video sequence [16,17]. This study suggests that
three-dimensional joint kinematics during gait can be used for
person identification, and its practicability in forensics should be
further studied using three-dimensional gait poses estimated from
single camera video sequences.

5. Conclusions

In this study, a framework was proposed to calculate the
similarity of walking motions when a person walked under two
different conditions (normal and tote-bag walking trials) for
identification. We developed a method of predicting the tote-bag
walking motion from an individual’s normal walking, one using
linear transformations and the other using partial least squares
regression. The performance demonstrated the use of 56 pairs of
normal and tote-bag walking motion data from 28 subjects,
indicating its promise for practical use in forensic gait analysis. Our
study showed that three-dimensional motions during walking
contain biometric information which is identifiable to a high
probability, even when a person walks at different weight
conditions.
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[13] H. Josi�nski, A. �Swito�nski, K. Jędrasiak, D. Kostrzewa, Human identification
based on tensor representation of the gait motion capture data, IAENG Trans.
Electr. Eng. World Sci. 1 (2013) 111–122.

[14] O. Ludwig, S. Dillinger, F. Marschall, Intra-individual gait pattern variability in
specific situations: implications for forensic gait analysis, Forensic Sci. Int. 264
(2016) 15–23.

[15] Z. Cao, T. Simon, S.E. Wei, Y. Sheikh, Realtime multi-person 2d pose estimation
using part affinity fields, CVPR 1 (2) (2017) 1302–1310.

[16] J. Lee, C.B. Phan, S. Koo, Predicting three-dimensional gait parameters with a
single camera video sequence, Int. J. Precis. Eng. Manuf. 19 (5) (2018) 753–759.

[17] B. Wandt, H. Ackermann, B. Rosenhahn, 3d reconstruction of human motion
from monocular image sequences, IEEE Trans. Pattern Anal. Mach. Intell. 38 (8)
(2016) 1505–1516.

[18] M. Unuma, K. Anjyo, R. Takeuchi, Fourier principles for emotion-based human
figure animation, Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques, ACM (1995) 91–96.

[19] K. Pullen, C. Bregler, Motion capture assisted animation: texturing and
synthesis, ACM Trans. Graph. 21 (2002) 501–508.

[20] M.E. Yumer, N.J. Mitra, Spectral style transfer for human motion between
independent actions, ACM Trans. Graph. 35 (4) (2016) 137.

[21] N.F. Troje, Decomposing biological motion: a framework for analysis and
synthesis of human gait patterns, J. Vis. 2 (5) (2002) 371–387.

http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0005
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0005
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0010
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0010
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0015
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0015
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0020
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0020
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0025
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0025
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0025
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0030
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0030
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0030
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0035
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0035
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0040
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0040
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0045
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0045
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0050
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0050
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0055
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0055
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0060
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0060
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0065
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0065
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0065
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0070
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0070
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0070
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0075
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0075
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0080
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0080
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0085
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0085
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0085
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0090
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0090
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0090
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0095
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0095
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0100
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0100
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0105
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0105


D.-P. Nguyen et al. / Forensic Science International 290 (2018) 303–309 309
[22] E. Hsu, K. Pulli, J. Popovi�c, Style translation for human motion, ACM Trans.
Graph. 24 (2005) 1082–1089.

[23] J. Min, H. Liu, J. Chai, Synthesis and editing of personalized stylistic human
motion, Proc. 2010 ACM SIGGRAPH Symposium on Interactive 3D Graphics and
Games (2010) 39–46.

[24] G.W. Taylor, G.E. Hinton, Factored conditional restricted Boltzmann machines
for modeling motion style, Proc. 26th Annual Int. Conf. Machine Learning
(2009) 1025–1032.

[25] V. Nair, G.E. Hinton, Rectified linear units improve restricted boltzmann
machines, Proc. 27th Int. Conf. Machine Learning (ICML-10) (2010) 807–814.

[26] K. Fragkiadaki, S. Levine, P. Felsen, J. Malik, Recurrent network models for
human dynamics, Proc. IEEE Int. Conf. Comput. Vis. (2015) 4346–4355.

[27] N. Lynnerup, P.K. Larsen, Gait as evidence, IET Biom. 3 (2) (2014) 47–54.
[28] Plug-in Gait Reference Online Guide Vicon Vicon Documentation Motion

Systems, U.K. Oxford, 2018 https://docs.vicon.com/pages/viewpage.action?
pageId=50888852.

[29] C.M. Bishop, Pattern Recognition and Machine Learning, Springer, New York,
2006.

[30] H. Hotelling, Analysis of a complex of statistical variables into principal
components, J. Educ. Psychol. 24 (6) (1993) 417.
[31] W. Gander, Algorithms for the QR decomposition, Resolut. Rep. 80 (2) (1980)
1251–1268.

[32] P. Geladi, B.R. Kowalski, Partial least-squares regression: a tutorial, Anal. Chim.
Acta 185 (1986) (1986) 1–17.

[33] S. Wold, K. Esbensen, P. Geladi, Principal component analysis, Chemom. Intell.
Lab. Syst. 2 (1–3) (1987) 37–52.

[34] S. Xia, C. Wang, J. Chai, J. Hodgins, Realtime style transfer for unlabeled
heterogeneous human motion, ACM Trans. Graph. 34 (4) (2015) 119.

[35] D. Xu, S. Yan, D. Tao, L. Zhang, X. Li, H.-J. Zhang, Human gait recognition with
matrix representation, IEEE Trans. Circuits Syst. Video Technol. 16 (7) (2006)
896–903.

[36] S. Sarkar, P.J. Phillips, Z. Liu, I.R. Vega, P. Grother, K.W. Bowyer, The humanid
gait challenge problem: data sets, performance, and analysis, IEEE Trans.
Pattern Anal. Mach. Intell. 27 (2) (2005) 162–177.

[37] J. Perry, J.R. Davids, Gait analysis: normal and pathological function, J. Pediatr.
Orthop. 12 (6) (1992) 815.

[38] C. Dong, C.C. Loy, K. He, X. Tang, Image super-resolution using deep
convolutional networks, IEEE Trans. Pattern Anal. Mach. Intell. 38 (2) (2016)
295–307.

http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0110
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0110
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0115
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0115
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0115
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0120
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0120
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0120
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0125
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0125
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0130
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0130
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0135
https://docs.vicon.com/pages/viewpage.action?pageId=50888852
https://docs.vicon.com/pages/viewpage.action?pageId=50888852
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0145
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0145
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0150
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0150
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0155
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0155
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0160
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0160
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0165
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0165
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0170
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0170
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0175
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0175
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0175
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0180
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0180
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0180
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0185
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0185
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0190
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0190
http://refhub.elsevier.com/S0379-0738(18)30410-9/sbref0190

	Predicting body movements for person identification under different walking conditions
	1 Introduction
	2 Method
	2.1 Data acquisition
	2.2 Data processing

	3 Results
	4 Discussion
	5 Conclusions
	Data statement
	Acknowledgments
	References


