Jaeseok (Jason) Jeong

Visual Intelligence Lab @ Korea Advanced Institute of Technology (KAIST) (VILab) N7-4 Mechanical Engineering Bldg 5123, Daehak Rd 291, Yuseong District, Daejeon, South Korea 010-2019-0919 jason.jeong@kaist.ac.kr PRINCIPAL Computer Vision, Geometric Vision, Omnidirectional Cameras, Event Cameras, Dual-INTERESTS Pixel Cameras, Vision-based Depth Estimation, Single Camera Depth Estimation ACADEMIC Ph.D. Mechanical Engineering Aug 2020 - Exp. Feb 2025 BACKGROUND KAIST, Daejeon, South Korea • Focus Areas: Computer Vision, Dual-Pixel Sensor, Single Camera Depth Estimation M.S. Mechanical Engineering Aug 2018- Aug 2020 KAIST, Daejeon, South Korea • Focus areas: Computer Vision. B.S. Mechanical Engineering Aug 2014- May 2018 University of Illinois at Urbana-Champaign, Champaign, IL • Minor in Computer Science **EMPLOYMENT** Graduate Researcher 2018 - Present HISTORY KAIST, VILab, Daejeon, South Korea • Senior Member and Current Lab Manager of VILab • Project Lead/Manager for Several Govt./Industry-funded Projects • Research on Depth Estimation using Dual-Pixel Camera Undegraduate Research Assistant Spring 2017 - Winter 2017 UIUC, Dynamic Robotics Lab, Champaign, IL • Designed Test benches for testing portions of quadrupedal robot • Assisted graduate student by improving assembly processes and testing processes through critical input • When assigned with unfamiliar tasks, reached out to available resources to become adept at the given task Undegraduate Research Assistant Summer 2016 - Spring 2017 UIUC, John Rogers Research Group, Champaign, IL • Fast paced research group that required strict deadlines regarding progress • Worked remotely with a graduate student on an ongoing project regarding manufacturing of MEMS device • Cooperated with graduate student on project by adding critical insight as to improve manufacturing process Course Assistant Spring 2016 TAM212 Dynamics Course, UIUC, Champaign, IL • Fast paced research group that required strict deadlines regarding progress • Worked remotely with a graduate student on an ongoing project regarding manufacturing of MEMS device

	• Cooperated with graduate student on project by adding critical insight as to improve manufacturing process
(International)	 SCI Journal 4. Han, J. K., Kang, M., Jeong, J., Cho, I., Yu, J. M., Yoon, K. J., Choi, Y. K. (2022). Artificial Olfactory Neuron for an In-Sensor Neuromorphic Nose. Advanced Science, 2106017.
	3. Kang, M., Cho, I., Park, J., Jeong, J. , Lee, K., Lee, B., Park, I. (2022). High Accuracy Real-Time Multi-Gas Identification by a Batch-Uniform Gas Sensor Array and Deep Learning Algorithm. ACS sensors.
	 Cho, Hoonhee, Jaeseok Jeong, and Kuk-Jin Yoon. "EOMVS: Event-Based Omnidirectional Multi-View Stereo." <i>IEEE Robotics and Automation Letters</i> (2021)
	 Lee, Yeonkun, Jaeseok Jeong, Jongseob Yun, Wonjun Cho, and Kuk-Jin Yoon. "SpherePHD: Applying CNNs on 360° Images with Non-Euclidean Spherical PolyHeDron Representation." <i>IEEE Transactions on Pattern Analysis and Ma- chine Intelligence</i> (2020).
	Conference
	1. Lee, Yeonkun [*] , Jaeseok Jeong [*] , Jongseob Yun [*] , Wonjun Cho, and Kuk-Jin Yoon. "SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360° Images" <i>Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition</i> (2019).
Patents	Domestic
	 권혁준, 정재석, 박휘성, 윤국진, "다시점 영상 스티칭을 위한 색 보정 방법, 영상 합성 방법, 영상 처리 장치, 저장 매체 및 컴퓨터 프로그램," KR 등록번호 10-2021- 0167053
	 이연건, 정재석, 윤종섭, 조원준, 윤국진, "전방향 영상의 딥러닝을 이용한 물체 감지 방법 및 장치, 그리고 이를 이용한 차량 자율 주행 방법 및 드론 자율 주행 방법," KR 등록번호 10-2020-0048643
Awards	 1st Place in the Event-Only Track in DSEC Challenge: A Stereo Event Camera Dataset for Driving Scenario, CVPRW 2021 Event-Based Vision
	1. IPIU 2019 우수논문상 금상: 정20면체 기반 360도 이미지 표현 및 CNN 적용 방법
Research Projects	 Intelligent AutoFocus Technology using Dual-Pixel Sensor: Samsung Electronics DS, 09/2021 - 09/2022
	5. Learning-based Metallic Surface Grade Classification: Samsung Heavy Industries, $09/2021$ - $12/2021$
	4. Perception for Collision Avoidance and Accident Prevention in Autonomous Naval System: KSOE, 09/2021 - 02/2022
	3. Development of Quadruped Robot for Surveillance, Reconnaissance, and Search Missions: ADD, 12/2019 – 11/2021
	2. Development of Mobile Ground Station for Unmanned Swarm Cyber Physical System (CPS): ADD, $11/2019-03/2021$
	1. AAVM Pedestrian Detection: Hyundai Construction Equipment, 02/2019 – 12/2019